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Abstract 
This study presents the outcomes of a systematic literature review of empirical evidence on the capabilities of 

sensing technologies for child–computer interaction (CCI). This paper provides an overview of what and how 

sensing technologies have been used to explain, understand, and predict children’s experiences with interactive 

devices and technologies and in what contexts. A search resulted in 44 papers that were included in the analysis. 

The results of the review depict the capabilities of sensing technologies for gauging children’s performance, 

engagement, and experiences (while interacting with technology) and the ongoing advances and implications that 

emerge from the employment of sensors to capture and improve child behavior. In particular, we identified the 

four main objectives (i.e., engagement of children, recognition/prediction of special needs/behavior, 

explaining/understanding the behavior/attitude, and learning performance/experiences) that the CCI research has 

been focusing on with sensor data. We also summarize the implications derived from the reviewed articles and 

frame them within four thematic areas. Finally, this review stresses that future research should consider 

developing a framework that would enable sensor data capacities to be aligned with the ethical, social, and 

generalizability guidelines. These sensor capacities could also be utilized to advance theory and practice. Our 

findings set a baseline for supporting the adoption and democratization of sensor data within future interactive 

technology research and development for children.  

Abbreviations: 
ACM → Association for Computing Machinery; ADHD → Attention Deficit Hyperactivity 
Disorder 
AHFE → Applied Human Factors and Ergonomics (conference); AI → Artificial Intelligence 

ASD → Autism Spectrum Disorder; BVP → Blood Volume Pulse; CCI → Child–Computer 
Interaction; CHI → Computer–Human Interaction; DIS → Designing Interactive Systems 
(conference); ECCE → European Conference on Computing Education; ECG → 
Electrocardiogram; EDA → Electrodermal Activity; EEG → Electroencephalogram; EMG → 
Electromyogram; FDA → Food and Drug Administration; FDG → Foundations of Digital 
Games (conference); GPS → Global Positioning System; GSR → Galvanic Skin Response; 
HCI → Human–Computer Interaction; HCII → Human–Computer Interaction International 
(conference); HR → Heart Rate; HRV → Heart Rate Variation; IBI → Interbeat Interval; IDC 

→ Interaction Design and Children (conference); IEEE → Institute of Electrical and 
Electronics Engineers; IJCCI → International Journal of Child–Computer Interaction; 
IMWUT → Interactive, Mobile, Wearable and Ubiquitous Technologies (journal); LAK → 
Learning Analytics and Knowledge (conference); ML → Machine Learning; PPG → 
Photoplethysmogram; RSP → Respiratory Patterns; SEN → Special Educational Needs; SLR 

→ Systematic Literature Review; ST → Skin Temperature; STEM → Science Technology 
Engineering and Mathematics; TACCESS → Transactions on Accessible Computing Jo
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(journal); TD → Typically Developing; TEI → Tangible, Embedded and Embodied Interaction 
(conference); THRI → Transactions on Human–Computer Interaction (journal); TiiS → 
Transactions on Interactive Intelligent Systems (journal); UAHCI → Universal Access in 
Human–Computer Interaction (conference); UMUAI → User Modeling and User-Adapted 
Interaction (journal); VAMR → Virtual Augmented and Mixed Reality (conference); VRIC → 
Virtual Reality International Conference; WSC → World Simulation Consortium (conference) 
 

1. Introduction 
During the last decade, we have seen an enormous penetration of ubiquitous technologies, such 

as tablets, smartphones, and wearables, into children’s lives (Kabali et al., 2015). Due to their 

ubiquitous nature, these technologies are accessible to young children, supporting their play, 

communication, learning, and other application areas. Technologies such as smart displays, 

motion-capture systems, and smart toys, enable children to perform more complex interactions, 

such as gestures, waving, handshaking, and other motion-based interaction. Many of these 

technologies, such as robots and other automated systems, are designed to support specific age 

groups and children’s needs and abilities. Such technologies enable various data collections via 

their ability to sense, among other things, children’s movements, gaze, and skin.  

 

Sensing technologies’ key affordances, such as their temporality or the ability to directly access 

new indicators of cognitive and affective processes (Cukurova et al., 2020), consist of relatively 

new and promising forms of information in CCI research. However, there is no consolidated 

overview of whether and how the technological developments of sensing are appropriate and 

beneficial for children’s interactive experiences. In this literature review, we focus on the 

sensing capability of these technologies (i.e., monitoring children’s skin conductance, heart 

rate, respiratory patterns, motion, gaze, blood volume pulse, facial features, postures, gestures, 

speech, and other special physiological data sources [e.g., neuroendocrine and other 

hormones]). These sensor-based data sources are often used in CCI research to inform 

researchers and practitioners about children’s attentive, cognitive, and behavioral patterns. This 

study investigates the opportunities, challenges, and ethical considerations of the “sensing 

capabilities of technology”1 for CCI research.  

 

Technologies that enable sensing are now widely available and affordable. They provide the 

capacity to obtain and store data about an individual’s experience with a technology. At the 

same time, these devices have made it possible to monitor more subtle phenomena, such as the 

quality of social interactions, students’ mental health, and learning engagement (Wang et al., 

2018). Worsley and Blikstein (2018) argued that sensing technologies could provide more 

meaningful insights into complex learning processes than are possible from traditional 

approaches. Similarly, Spikol et al. (2018) highlighted the importance and benefits of sensing 

to support open‐ ended tasks. Another example is quantified-self movement, which has shown 

its potential to utilize authentic and granular activity data in order to inform users about their 

lifestyle and fitness (Lee et al., 2016), with the aim of involving the user in self-monitoring and 

self-reflection processes to regulate different aspects of their life and behavior (Ruiz et al., 

2016).  

 

                                                 
1 Also referred to as a sensing technology throughout this paper. 
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These intriguing sociotechnical developments over the last decade, combined with the 

development of different technologies and sensors (e.g., wristbands, cameras), posit the sensing 

capability of technologies as an emerging paradigm that potentially provides opportunities and 

challenges for CCI research. For instance, sensing can lead to significant concerns among CCI 

researchers and stakeholders about the invasion of children’s privacy; bias, fairness, 

accountability, and transparency of the sensor data; and the risk of enabling and nurturing at 

this very early age a “surveillance” culture through constant monitoring of children’s 

behaviors.  

 

In light of these potential benefits and challenges, this paper presents a systematic literature 

review (SLR), strictly following the guidelines of Kitchenham and Charters (2007). The aim 

of this SLR is to examine the empirical evidence on the status of sensing technologies in CCI 

research, as well as to identify the challenges, opportunities, and limitations of sensing 

technologies in CCI research. This SLR will allow us to provide information about the ways in 

which sensing has been utilized, and about its impact on CCI research. This paper presents an 

overview of what and how sensing technologies have been used and in what contexts. Although 

sensing technologies have not been introduced in the CCI field as much as in other HCI areas 

(e.g., immersive environments, mobile and ubiquitous computing), enough work has already 

been done to conduct a review. Specifically, the following research questions guide our work. 

RQ1: What is the current status of sensing technologies for CCI research?  

RQ1.1: Which sensing technologies are used in CCI research? 

RQ1.2: What types of data do these sensing technologies capture? 

RQ1.3: What insights come from sensing technologies in CCI research? 

 

RQ2: What are the challenges, opportunities, and limitations of sensing technologies in CCI 

research?  

 

Leveraging sensing technologies to amplify children’s interaction potential, or utilizing them 

as a mechanism to explore children’s experiences while interacting with systems (Lee-Cultura 

et al., 2020) is a valuable capacity. The use of sensing technology has been employed in CCI 

research as well as in neighboring communities (e.g., the learning sciences) in different ways. 

For instance, the use of video recordings that were later coded by a human expert is an 

established approach in qualitative research, and the use of eye tracking or other sensor data is 

also not new. However, the use of sensing technology as an automated, unobtrusive, and 

continuous data collection approach that produces complementary insights (Thieme et al., 

2020) for traditional HCI data collection might serve as a useful information resource for CCI 

research. At the same time, this use encompasses unprecedented concerns about the invasion 

of children’s privacy, about bias, fairness, accountability, and transparency of the sensor data, 

and about the respective insights and extracted practices (Charisi et al., 2020; Cukurova et al., 

2020; Frauenberger et al., 2019). All these concerns require in-depth investigation and debate 

in the CCI community.  

2. Related Work 
In recent years, the CCI community has engaged in discussions about the promised benefits 

and ethical issues of sensing and logging technologies in evaluating children’s behavior 

(Hourcade et al., 2018). These technologies include tracking of movements and keystrokes, the 

capture of facial movements, eye tracking, and the use of biomarkers and quantified data, such 

as measurements of EDA, blood pressure, and heart rate. In some cases, other sophisticated 

sensing devices are employed. For example, Bian et al. (2013) used an impedance cardiogram 
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to monitor the stress levels in a virtual instruction system. Similarly, Zhang et al. (2015) used 

EMG along with other sensors to quantify cognitive load in another instruction system.  

 

However, using sensors in studies involving children entails several ethical and privacy-related 

implications that need to be considered (Dowthwaite et al., 2020; Kawas et al., 2020). Despite 

the challenges of sensing technologies as a method for evaluating children’s behavior, previous 

works advocate the use of such technologies to capture complex interactions between children 

and the systems with which they engage in different contexts and for different purposes (e.g., 

Kourakli et al., 2017; Papavlasopoulou et al., 2018). In particular, Kourakli et al. (2017) used 

motion-based sensing to analyze how children with special educational needs engage with a 

motion-based touchless game. Papavlasopoulou et al. (2018) provided evidence based on eye 

tracking for the relation between joint attention (how much collaborating peers look at the same 

set of objects in the same time window) and children’s performance in a collaborative coding 

task. In both these studies, there were special processes for preserving children’s anonymity: 

Kourakli et al. (2017) used the session identifiers for individuals, and Papavlasopoulou et al. 

(2018) used only group-based identifiers. Therefore, sensing technologies were employed to 

serve specific and well-informed purposes that otherwise could not be explored using 

traditional means (e.g., identifying common gaze during programming or monitoring 

children’s detailed movement patterns). 

 

This line of research involves a rich set of multimodal data that can inform the researcher about 

temporal and sometimes unique qualities of children’s experience and behavior (Crescenzi‐

Lanna, 2020). For instance, eye tracking enables children’s attention to be observed, and it 

provides insights into their cognitive effort when engaging with a system (Papavlasopoulou et 

al., 2018). EDA and temperature can be used to infer engagement and stress (Di Lascio et al., 

2018), while facial videos can, to a limited extent, reveal the emotions displayed by children 

throughout the different events of the interaction (Amos et al., 2016). Wristband sensors have 

been coupled with wearable applications to enable children and parents to track changes in 

their emotions (Betancourt et al., 2017). In a recent study, Lee-Cultura et al. (2020) utilized 

sensing technology in an informal game-based learning setting to showcase how multiple 

sensor data provide better opportunities to explain and predict children’s behavior than the 

individual data sources.  

 

There are several information-rich SLRs in the two fields of CCI and sensing technologies 

(individual and multimodal). However, no SLR has explicitly connected these two fields. For 

example, CCI-related conferences (e.g., IDC, CHI, LAK, TEI) have attracted a few literature 

reviews concerning the different aspects of CCI research. Although these works did not focus 

on the role of sensing technology in contemporary CCI research, certain connections and 

implications were extracted. For example, Van Mechelen et al. (2020), in a review of the ethical 

aspects of research involving children, highlighted aspects connected with the type of data 

collection, data protection, and data privacy, as well as with the child’s and parent’s awareness 

of the type of information collected by the researcher and why. In the same vein, Kawas et al. 

(2020), in a critical reflection on the values and ethics over the past decade, indicated the 

importance of upholding children’s privacy and the role of sensitive data collection from 

children. Baykal et al. (2020) reviewed the literature on collaborative technologies, including 

those used with children with special needs, and addressed factors such as social interaction, 

engagement, and communication among the children and the supporting persons (e.g., parents, 

teachers). Another noteworthy contribution from a related field is de Barbaro’s (2019) review, 

which showcased how sensing technology can track children’s motion, obtain audio and video Jo
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data, and utilize ML algorithms to extract meaningful markers such as children’s stress, 

depression, and emotional adaptation, and parental stress and academic success.  

 

There are also several SLRs on unimodal and multimodal sensor data and their specific usage. 

For example, Sharma and Giannakos (2020a) reviewed how multimodal sensor data have been 

used to understand and predict learners’ behavior and/or performance, as well as the 

importance of these data for the future design of learning technologies. There have been several 

literature reviews on the use of eye-tracking research, most notably those by Ruhland et al. 

(2015) on the use of gaze in human–robot interaction and by Jarodzka et al. (2020) on the use 

of gaze in education. Similarly, there are contributions from the affective computing domain 

about using video and audio to detect expressions/emotions (Poria et al., 2017) and about the 

use of physiological, audio/video, and other data sources to detect emotions/expressions in 

educational settings (Yadegaridehkordi et al., 2019). Concerning EEG, there are several 

literature reviews based on the collection, processing, and usage of EEG data, among which 

the closest systematic reviews to CCI research are about the brain–computer interface for 

gaming (Vasiljevic and de Miranda, 2020) and use of EEG in neurohaptics (Alsuradi et al., 

2020). Furthermore, Niknejad et al. (2020) provided a narrow systematic review on intelligent 

wearable devices, including smart watches, smart glasses, and head-mounted eye trackers.  

 

The previous works and literature reviews in the field indicate the importance of research at 

the intersection of sensing technologies and CCI. This research domain inherently connects 

this technology with children’s affordances (e.g., embodied interaction) and major debates 

(e.g., sensitive data). However, as noted above, there are no literature reviews on the confluence 

of these two major fields (i.e., CCI and sensing technologies). In the present work, we collect, 

filter, and analyze the research that addresses the intersection between children and technology 

that uses sensor data as its primary source of investigation. This study summarizes the insights 

and functions that sensing technology can offer in CCI, and it identifies the challenges and 

opportunities of sensing technology to further CCI research. 

3. Methodology 
In this SLR, we follow transparent and widely accepted procedures (especially in the area of 

computer science, and its sub-fields of HCI and educational technology) to minimize potential 

biases (researchers) and support the reproducibility of the results (Kitchenham and Charters, 

2007). 

3.1 Article Collection 

Several procedures were followed to ensure a high-quality review of the literature on sensing 

technologies in CCI. The review includes “non-conventional” children’s data (e.g., keystrokes, 

clickstreams, and other computer logs) coming from sensors, including gaze (general direction, 

pupilometric measurements, eye-tracking data), facial features (action units, landmarks, 

emotions, expressions), physiological data (e.g., EEG, EMG, BVP, HRV, hormonal readings, 

respiration-related measures), and motion-based data (posture, gesture). In order to have a more 

comprehensive review of the use of sensing technologies, we did not specify any behaviors or 

outcomes.  

 

A comprehensive search of peer-reviewed articles was conducted on 30 May 2020 (posters, 

dissertations, editorials, and reports were excluded). The following keyphrase was used to Jo
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search the databases: “physiol* data” AND (“interaction design” OR “HCI” OR “human 

computer interaction”) AND (child* OR kid*). In addition, we manually checked the IDC 

proceedings and IJCCI papers that have been published up to June 2020. There was no time 

limit put on the year of publication, but the collected articles all come from the last decade. 

The following databases were searched: SpringerLink, Wiley, ACM Digital Library, IEEE 

Xplore, Science Direct, SAGE, and ERIC. The search process uncovered 696 peer-reviewed 

articles.  

3.2 Inclusion and Exclusion Criteria 

The selection phase determines the overall validity of the literature review, and thus it is 

important to define specific inclusion and exclusion criteria. We applied eight quality criteria 

informed by related works (e.g., Mangaroska and Giannakos, 2018)` known as critical 

appraisal skills program criteria” (for details of the checklist, see Dybå & Dingsøyr, 2008; 

Greenhalgh, 1997). As Dybå and Dingsøyr (2008) specified, the quality criteria should cover 

three main issues (rigor, credibility, and relevance) that need to be considered when evaluating 

the quality of the selected studies. We applied eight quality criteria informed by related works 

(e.g., Dybå & Dingsøyr, 2008): 

 

1. Does the study clearly address the research problem? 

2. Is there a clear statement of the aims of the research? 

3. Is there an adequate description of the context in which the research was carried out? 

4. Was the research design appropriate to addressing the aims of the research? 

5. Does the study clearly determine the research methods (subjects, instruments, data 

collection, data analysis)? 

6. Was the data analysis sufficiently rigorous? 

7. Is there a clear statement of findings? 

8. Is the study of value for research or practice? 

Once the papers were selected based on the critical appraisal skills program criteria (Dybå 

and Dingsøyr, 2008; Greenhalgh, 1997), we applied the following additional criteria for 

further selection of papers: 

 

1. CCI research covers end users, ranging from toddlers to adolescents (Giannakos et al., 

2020), so the participants in the studies had to be 19 years old or younger (Kail, 

2011). 

2. The papers should present empirical studies with children as the end-user; studies that 

present design sessions where the children are co-designing sensing technologies were 

not included. The reason for excluding papers on design sessions with co-design 

activities is that such studies do not use sensor-based data (i.e., the objective of this 

review study). Further, review papers were also removed.  

3. The analysis and outcomes of the papers should include the sensing data streams used 

and what measures were employed. This is because of the focus of this paper (e.g., 

see RQ1).  

 

Finally, we selected 50 papers for further in-depth analysis. Figure 1 shows the breakdown of 

the selection process with the number of papers. 
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Figure 1. Number of papers at the different phases of the selection process 

3.3 Data Analysis 

To answer the two research questions through this SLR, we analyzed the selected papers using 

a coding scheme. This scheme allowed us to consolidate the essence and the main focus of the 

studies. We selected categories that represent the physiological data utilized as well as the 

objectives and content of the paper. This categorization enabled us to record all the details 

needed from the papers and to use them to address our research questions. In particular, each 

collected study was analyzed using the following elements:  

 

1. Experimental setting: this is the space where the data was collected, such as a 

laboratory, hospital (dedicated special needs facilities), museum, school (as part of 

classroom activities), or outdoors (outside classroom). 

2. Number of children: the number of participants in the empirical studies reported in 

the selected contributions (fewer than 10, 10–30, 30–50, 50–100, more than 100). 

3. Population: the age range of the children and further categorization of the children’s 

population, including infants (0–2 years), toddlers (2–4 years), preschool (4–6 years), 

school age (6–12 years), and teenagers (13–19 years). 

4. Type of population (if SEN, then type of SEN): this coded whether and what type of 

special needs the participants had. 

5. Research design: ethnography, evaluation, and quasi-experimental. 

6. Type of data collected: this is the type of data collected, such as gaze, EDA, EEG, 

ECG, and PPG. 

7. Brands of the data collection technology: this coded the brands (or the exact model 

names, if provided) of the technologies used to collect the sensor data, such as 

Biopac, Tobii, and Empatica. In case of the contributions using “in-lab” created 

technology, we coded it as “self-made tech”. 

8. Main task of the study: this is the core task of the contribution, such as basic 

communication, basic interaction, driving, game, learning task, memorization, none, 

participatory design, problem solving, robot interaction, role playing, social 

interaction, and video interaction. 

9. Performance assessment: this refers to the methods used by the contributions, such 

as pre-post-questionnaire, pre-post-test, and task-based performance. Jo
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10. Research methodology: qualitative, quantitative predictive, quantitative inferential, 

and mixed methods. 

11. Research objective: this refers to the main theme of the paper showing why the 

sensor data was used. 

12. Research outcome: this refers to the main outcome of the contributions. 

 

It is important to highlight that articles were coded based on reported information. Different 

authors reported information at different levels of granularity, while in some cases the 

information was missing from the paper. Overall, we endeavored to code the article as 

accurately and completely as possible. Details on the paper coding are shown in Appendix A1. 

While coding the initially selected 50 articles, we noticed that six of them did not provide most 

of the information to be coded across many of the above 12 points. Therefore, we decided to 

exclude these six papers from the SLR due to the limited information reported. 

4. Research Findings 

4.1 Population and Research Design 

Concerning the sample size employed, a good amount (n=10) of the studies engaged 10 or 

fewer children, most (n=19) had 10–30 children, six studies had 30–50 children, and another 

six had 50–100 children. Three studies did not report the exact sample size and only two studies 

(Jiang et al., 2020; Xu et al., 2012) used a sample size of more than 100 participants. The 

median population size is 20–30.  

 

Another interesting element of the methodology is the age of the children included in the 

selected studies. Most studies focused on teenagers, then school age, preschoolers, toddlers and 

infants, with the median age group being school age. Strangely, a good number of CCI papers 

did not specify the age of the children. Figure 2 provides the number of contributions for each 

of the age groups. 

 

 
Figure 2. The number of contributions for each of the age groups 
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Most of the studies focused on typically developing (TD) children (n=22), while 12 

contributions focused on SEN children, and seven studies recruited both TD and SEN children 

as participants. Two studies did not provide any information about the abilities of the 

participating children. Among the studies that included SEN children, most (n=16) had 

participants diagnosed with ASD, and two focused on children with ADHD. One study focused 

on children with Down’s syndrome (Saadatzi et al., 2013), another on children with motor 

planning difficulty (Johnson and Picard, 2017), and another on children with 

neurodevelopmental communication impairments (Betancourt et al., 2017). Finally, one 

contribution did not specify the special needs of the children participating in the experiment.  

 

In terms of research design, most studies (n=25) were quasi-experimental or an evaluation 

study (n=14). Two contributions presented case studies (Dinet and Kitajima, 2018; Johnson 

and Picard, 2017), one study presented a design experiment (Hauser et al., 2020), and one study 

presented a usability study (Bekele et al., 2013). 

4.2 Interaction Environment and Setting 

Most studies (n=25) used laboratories as their experimental setting. Given that there is usually 

a need for specialized equipment and settings, the frequent use of established user-experience 

labs is not surprising. However, we also identified a good number of “in-the-wild” studies that 

took place in schools/classrooms (n=8) and hospitals (n=6) in which the experiments were 

conducted in a dedicated facility for SEN children. This, too, is unsurprising, since sensing is 

a technology traditionally used for children with special abilities and often it is necessary to 

keep the context of the hospital. Four contributions conducted the experiments as out-of-

school/classroom activities, and two contextualized their experiments in a museum setting. 

Figure 3 (left panel) shows the distribution of the papers.  

 

We found a wide range of intended goals/tasks for which the sensing technology was used in 

the studies. The most frequent goal was connected with gameplay and driving tasks (used in 

10 and nine contributions, respectively). These goals were followed by basic interactions with 

various technologies (n=7), problem solving (n=6), and interactions with robots (n=5). Other 

goals used in the remaining contributions were learning-based goals (Jeon et al., 2019; Woolf 

et al., 2009) and video interaction (Castellano et al., 2014; Sonne et al., 2017). Four goals were 

associated with one contribution each: storytelling (Redata et al., 2017), social interaction 

(Melo et al., 2019), role playing (Silva et al., 2013), and participatory design (Clegg et al., 

2017). A detailed account of our analysis is presented in Figure 3 (right panel). 
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Figure 3. The number of papers based on the contextual setting (left) and the 

experimental task (right) 

4.3 Data Collected and Performance Assessment 

In terms of data collection, there were 25 different data modalities used (some being similar 

but measured with different sensors, such as ECG, HRV, and HR; PPG and BVP; and EDA 

and GSR). The distribution is shown in Figure 4 (left panel). Most studies used two or more 

data sources (27 out of 44), while 17 used only one modality. In terms of number of data 

modalities collected, nine contributions used two data streams, and eight contributions used 

three data streams. Furthermore, three studies utilized four data streams, four studies used 

seven data streams, and two data studies used eight data streams. For individual data streams, 

GSR (n=14) and respiratory patterns (n=13) were the most used data sources, followed by ECG 

and PPG (n=10). The next most popular data stream is children’s gaze (n=8), followed by EEG, 

EMG, skin temperature (all with six contributions each), EDA, HR, and motion (all with five 

contributions each). Four studies recorded facial data, while BVP and physical activity were 

used by three studies each and HRV and speech data were recorded by two studies each. 

Finally, there were individual cases of using an accelerometer and IBI (Goodwin et al., 2016), 

GPS and sleeping patterns (Kuzminykh and Lank, 2019), phonocardiogram and impedance 

cardiogram (Bian et al., 2013), and posture (Woolf et al., 2009). In most of the studies, the data 

modality was associated with the intended goal of the study; for example, children’s gaze was 

used to capture their attention, reading/writing behavior, and information processing, while 

motion data was used to capture children’s workout activity and embodied interaction.  

 

In terms of brands or models of the technological solutions, there were 11 contributions that 

did not provide this information, and five contributions used their lab-made technologies for 

the empirical purposes (Hauser et al., 2020; Johnson and Picard, 2017; Sonne et al., 2017; 

Woolf et al., 2009; Xu et al., 2012). Among the contributions that used off-the-shelf solutions, 

13 used a Biopac product (BioNomadix, Biopac MP150, BioPLUX) and nine used a Tobii eye 

tracker (TX120, eye-tracking glasses, others that were not mentioned). Empatica and Emotive 

were used by five and four contributions, respectively. The rest of the off-the-shelf technologies 

were used in more sparse ways that the four providers just mentioned. These providers (models) 

included Zephyr BioHarness (two contributions), Affectiva, B-alert, Gazepoint, Neurosky, and 

Polar (all with one contribution each). To summarize, most of the studies employed highly 

reliable sensing technology (e.g., medical-quality FDA approved devices) and sometimes we 

also encountered lab-made technologies to satisfy the needs of the study. Figure 4 (right panel) 

presents in detail the data collected and the various technologies employed for these data 

collections. 
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Figure 4. The number of papers based on the sensor data collected (left) and the 

technology used (right) 

 

An important aspect of research that uses sensor data is connected with what is known in the 

ML and AI disciplines as the “ground truth”. This is either a stable value that depicts either a 

reliably certain “truth” (e.g., correctness of the child when responding to a multiple-choice 

question) or a “truth” observed and annotated by humans (e.g., annotating when the child 

interacts with the system based on a video recording). This information is used together with 

the information provided by inference from the sensor data to train, test, and, ultimately, 

evaluate our models. When the method of inference is statistical and not based on ML, this 

ground truth is replaced by a dependent variable that is decided a priori (in the design phase).  

 

The performance assessment (either ground truth or the dependent variable) in the selected 

contributions was either missing (n=21, with two others not mentioning the method used for 

performance assessment) or it used one of the following three techniques for assessing it: (1) a 

group of studies used task-based performance (e.g., game score, number of mistakes, matched 

figures) as the performance assessment technique (n=17); (2) three studies used pre-post-tests 

(Redata et al., 2017; Wade et al., 2015, 2016); and (3) two studies used pre-post-questionnaires 

(Bian et al., 2019; Sonne et al., 2017) to measure the experiment-based performance of the 

participating children. Although the absence of ground truth would have been unacceptable in 

other communities (e.g., AI, ML), in the context of a multidisciplinary research community 

such as CCI with a substantial body of research focusing on qualitative and exploratory studies, 

this outcome is not surprising. Several researchers used insights from sensing technology for 

exploratory purposes, or to complement their understanding and formulate hypotheses that 

were tested in another research study.  

 4.4 Data Analysis, Research Objectives, and Outcomes 

Among the 44 articles, there is a fairly skewed distribution of the data analysis methodologies 

toward use of quantitative methods. Twelve studies used mixed methods, 10 used qualitative 

methods, and 22 used quantitative methods. Among the studies using quantitative methods to 

analyze the data, 11 used inferential statistics, 10 used predictive modeling, and one study used 

both the inferential statistics and predictive modeling (Yiannakakis et al., 2008). In other 

words, 34 out of 44 studies used at least one quantitative data analysis method (including mixed 

methods). This is expected because sensing technologies provide an ample amount of 

numerical data that can be analyzed quantitatively to accomplish the research objective. 
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In terms of the primary research objectives of the contributions, we observe four prominent 

themes emerging from the selected papers: 

 

1. Engagement of children (n=9): In this category, the dependent variable of the 

contribution was the engagement of the children. It was either measured/predicted using 

the sensor data, or the sensor technology was used to intervene to improve the 

engagement levels of the children while interacting with the specific technology.  

2. Recognition/prediction of special needs/behavior (n=11): In this category, the main 

focus was either on differentiating between TD and SEN children, or on recognizing 

behavior indicative of a special need. 

3. Explain/understand the behavior/attitude (n=17): This category of papers focused 

mainly on explaining, understanding, or predicting different behaviors (affective, 

cognitive, immersive) or on explaining different attitudes (sympathy, deception, 

specific attitudes toward the interactive system). 

4. Learning performance/experiences (n=7): These papers focused on explaining and/or 

predicting participants’ learning task performance or experiences while interacting with 

the system. 

 

We report the research outcomes and insights of these four themes in the following subsections.  

4.4.1 Engagement of children 

 

Among the studies that are concerned with children’s engagement, different aspects and/or 

points-of-view of engagement are examined or explored. For example, Bian et al. (2016, 2019) 

and De Wet and Potgieter (2019) used the “flow theoretic” view of engagement 

(Csikszentmihalyi et al., 2018). In the studies by Sonne et al. (2017), Morrison et al. (2015), 

De Wet and Potgieter (2019), and Castellano et al. (2014), engagement was investigated in a 

context where a new technology was presented to the children (e.g., games, robots, and tactile 

interaction). Furthermore, Yannakakis et al. (2008) studied social engagement in a more 

naturalistic setting such as a playground, while Javed et al. (2019) studied social engagement 

in a robot-mediated interaction setting. Table 1 presents the contextual details of these papers 

(the data collected, the goal of the study, and the age group targeted). 

 
Table 1. Details of the studies where children’s engagement was the main theme 

Reference Data Goal Age group 

Sonne et al. (2017) Respiratory patterns To keep children engaged with a 

game while the doctors are 

taking blood samples from them 

7–12 

Betancourt et al. (2017) EDA Engagement with the biosensors 

themselves, measured by the 

desensitization period 

2–11 

Bian et al. (2019) PPG, GSR, and 

respiration 

Engagement with a driving task 14–17 

Castellano et al. (2014) Facial expressions Evaluation of a multilayered 

engagement detector 

8–9 

Morrison et al. (2015) Heartbeat and breath rate Describe participant experience 

and engagement (enjoyment and 

12–19 Jo
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pleasure) with the new tactile 

interactive wall 

Javed et al. (2019) Facial data Identify key design features that 

can improve social engagement 

in children 

4–12 

Bian et al. (2016) ECG, ICG, PPG, PCG, 

EDA, GSR, EMG 

Engagement with a driving task Not mentioned 

Yannakakis et al. (2008) ECG Estimation of the degree to 

which games provided by the 

playground engage the players 

8–10 

De Wet and Potgieter 

(2019) 

EEG Excitement, engagement, and 

frustration while manipulating a 

robot with a brain–computer 

interface 

13–19 

 
 

The studies used physiological data both as a measurement and as an interaction modality. For 

example, in a biofeedback game, children easily got engaged with the game through controlled 

breathing even during the longer and more complicated procedures (Sonne et al., 2017). In an 

experiment with a virtual driving adaptive platform, Bian et al. (2019) showed that the 

engagement-sensitive group had a statistically significantly higher engagement than 

participants in the performance-sensitive group, and that the physiology-based data-driven 

adaptive mechanism may be more effective at keeping the user in the “flow state” when 

compared to the performance-based data-driven adaptive mechanism. Betancourt et al. (2017) 

reported that younger children (aged 2–4) required a period of engagement with using the 

biosensors before wearing them. They further reported that, despite the initial reluctance of 

many younger participants, most of the children started wearing the sensors consistently in 

subsequent sessions. In another study that examined engagement with tactile interaction, 

Morrison et al. (2015) reported that participants found the experience engaging and understood 

what was required of them. 

 

To understand the key design features required to improve children’s social engagement, Javed 

et al. (2019) found that touch-based interaction was more engaging than gaze-based interaction 

for children with ASD. Further, in an attempt to predict children’s engagement with a robot 

using physiological data, Castellano et al. (2014) used features such as a smile detector, a smile 

feature, manually annotated gaze features (look at robot high/medium/not), game state, game 

evolution, and captured pieces. They further reported F1-scores of 92% and 83% for high/low 

and high/medium/low engagement levels. In a similar setting, Bian et al. (2016) reported an 

accuracy of 78% for predicting children’s engagement levels. Moreover, heart-rate-based 

features (average, maximum, range, and approximate entropy) have been positively correlated 

with children’s engagement in the playground (Yiannakakis et al., 2008).  

 

To summarize, sensing technology has been used either for engaging children (e.g., using 

sensor data as an interaction modality that engages children) or for quantifying children’s 

engagement (e.g., using sensing data to accurately estimate and predict children’s engagement). 

Either of the two approaches seems to support CCI research and provides valid evidence that 

would otherwise be difficult to obtain with mainstream interaction modalities and 

measurements.  Jo
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4.4.2 Recognition/prediction of special needs/behavior 

 

Table 2 presents the contextual details of these papers (the data collected, the goal of the study, 

and the age group targeted). 

 
Table 2. Details of the studies where recognizing/predicting special behavior of the children was the main 

theme 

Reference Data Goal Age group 

Jiang et al. (2020) Motion Achieve a comprehensive 

coverage of all ADHD-related 

symptoms in DSM-5 

7–13 

Goodwin et al. (2016) BVP, IBI, EDA, 

acceleration 

 

Predicting potentially dangerous 

aggressive behavior toward others 

in children with ASD  

6–17 

Kuzminykh and Lank 

(2019) 

GPS tracking, activity, and 

sleeping patterns 

 

Understanding information needs 

of parents with children with ASD 

Not mentioned 

Melo et al. (2019) Speech, ECG, movement 

 

Understanding effect of robot-

mediated therapeutic activities 

involving children with ASD 

3–6 

Lundberg et al. (1993) Systolic and diastolic blood 

pressure, heart rate, and 

neuroendocrine activity 

Comparing physiological data 

when the children are at daycare 

and while they are at home 

3–6 

Bekele et al. (2013) Gaze, ECG, PPG, SKT, 

GSR, EMG, and respiration 

 

Difference between ASD and TD 

children when they perform a 

facial expression detection task  

13–17 

Saadatzi et al. (2013) ECG, PPG, SKT, GSR 

 

Examination of affective and 

physiological variation among 

children with ASD, in response to 

manipulated social parameters 

13–19 

Bian et al. (2013) ECG, ICG, PPG, PCG, EDA, 

GSR, EMG 

 

Develop a driving simulator using 

VR technology capable of flexibly 

responding to subtle affective 

changes in teenagers with ASD 

Not mentioned 

Sonne and Grønbæk 

(2015) 

Physical activity 

 

Investigate the potential of using a 

wearable-sensor system to provide 

in situ assistance to children with 

ADHD in regaining attention in 

school contexts 

Not mentioned 

Mohammad and 

Nishida (2010) 

GSR, respiration, and BVP 

 

Distinguishing natural and 

unnatural partner behavior in a 

close encounter situation 

Not mentioned 

Wade et al. (2016) EEG, physiological 

 

Evaluate a gaze-contingent 

driving intervention system with 

drivers with ASD 

13–18 

 

 

These studies address the behavior and needs of children with special needs. These efforts can 

be further divided into three sub-categories: (1) finding behavioral patterns that are peculiar to 

a given special need; (2) finding the behavioral differences between TD and SEN children; and 

(3) detecting special needs for children. 

  

Finding behavioral patterns that are peculiar to a given special need: Jiang et al. (2020) 

showed that there are significant differences in the motion data of children with ADHD and 

TD children. They also demonstrated that these differences appear even in tasks that do not 

require a lot of motion, such as reading, and the differences are more pronounced as the Jo
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requirement of motion-based actions increase for the completion of a given task such as limb 

reaction. In another study on robot interaction, Bekele et al. (2013) revealed differences 

between the gaze patterns of ASD and TD children. ASD children focused on the forehead, 

whereas TD children focused on the eyes of the virtual character. Using physiological data, 

Bekele et al. (2013) further found a 94% accuracy on ASD versus TD classification. Saadatzi 

et al. (2013) showed that children with ASD had higher anxiety levels while reading social 

media texts than TD children. 

 

Finding the behavioral differences between TD and SEN children: Goodwin et al. (2016) 

combined physical (movement) and physiological (HRV, BVP, EDA) features to predict the 

onset of aggressive behavior in children with ASD. Melo et al. (2019) showed that children 

with ASD have a higher heart rate during an obstacle completion task, especially when a child 

is struggling to complete a task (such as removing the obstacle). Moreover, the children with 

ASD also reported seeing the movement of the robot to be unnatural when it was controlled by 

a human (wizard) than when it was automatic (Melo et al., 2019). Bian et al. (2013) developed 

a driving simulator using VR technology to flexibly respond to subtle affective changes in 

teenagers with ASD. The system was highly accepted among the children with ASD (Bian et 

al., 2013). 

 

Detecting special needs of children: Lundberg et al. (1993) compared physiological data for 

when children stayed at home with when they were in daycare. Compared to levels reported at 

home, daycare was associated with an increased heart rate, epinephrine, and norepinephrine 

excretion, and with decreased cortisol levels. The authors concluded that the daycare centers 

present more challenges to the children than activities at home, such as interaction with other 

children, adults, and participation in various activities (Lundberg et al., 1993). In a similar vein, 

Sonne and Grønbæk (2015) developed a system for using wearable-sensor data to lower the 

hyperactivity levels of children with ADHD so that they can re-engage with school activities. 

 

In summary, all three categories used sensing data either to explore or to identify a particularity 

that the human eye would be unable to capture, detect as a pattern, or use comparatively. To 

detect a pattern and perform a comparison, the studies employed prediction and classification 

techniques that are now part of the common methodological toolkit of a CCI researcher. It is 

likely that in the coming years there will be an increase in the use of these techniques due to 

the rise of both sensing technologies and AI and ML. 

4.4.3 Explain/understand the behavior/attitude 

The contributions under the theme of explaining/understanding the behavior and/or attitudes 

of the children are primarily concerned with various aspects of children’s cognitive, affective, 

and attention-related behavioral patterns. For example, cognitive load, affective states 

(frustration, boredom, stress, deception), emotional states (happy, sad, angry), attention while 

performing a specific task, and joint attention in cooperative/collaborative tasks. In most of 

these papers, the sensor data was used to infer/detect these patterns, and the papers under this 

theme did not necessarily have a “learning objective” (unlike those described in Section 4.4.4). 

Table 3 presents the contextual details of these papers (the data collected, the goal of the study, 

and the age group targeted). 

 
Table 3. Details of the studies where explaining/understanding the behavior of typically developing 

children was the main theme 

Reference Data Goal Age group Jo
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Lopes et al. (2018) Speech Understanding symptoms of 

high cognitive load 

Not mentioned 

Dinet and Kitajima 

(2018) 

Motion Effect of immersive 

environment on (dangerous) 

behavior 

Mean age 9.5 

Xu et al. (2012) Physical activity Understand the attitude toward 

sustainability, adaptability, and 

sociability goals of the activity-

based games 

Not mentioned 

Pike et al. (2016) EEG Attention while watching films Not mentioned 

Okita et al. (2011) Facial data Examine the different features 

of humanoid robots and the 

influence on children’s affective 

behavior 

4–10 

Sridhar et al. (2018) GSR, HRV Understand cognitive-affective 

states while performing 

cognitive tasks 

4–7 

Christensen and 

Biskjaer (2018) 

HR Understand children’s playing 

behavior 

8–9 

Jyoti and Lahiri 

(2020) 

PPG, GSR, respiration Understand the effect of joint 

attention cues 

5–8 

Sridhar et al. (2019) GSR, HRV Understand cognitive-affective 

states while performing 

cognitive tasks 

4–7 

Zhang et al. (2014) PPG, GSR, gaze 

 

Affective states 13–17 

Jeon et al. (2019) Gaze Find a relationship between eye 

movement and degree of 

sympathetic behavior 

Not mentioned 

Bekele et al. (2014) Gaze, ECG, PPG, SKT, 

GSR, EMG, and respiration 

Model the context-relevant 

psychological state 

Not mentioned 

Silva et al. (2013) BVP, EDA Understanding deceptive 

behavior during multimedia 

interaction 

Not mentioned 

Zhang et al. (2015) EEG, ECG Measure cognitive load 13–17 

Woolf et al. (2009) Posture, movement, grip, 

and emotions 

Emotional states Not mentioned 

 

 
This group of contributions used physiological data streams to explain the behavior during 

and/or attitudes toward the interaction with the technology. One prominent facet of this 

category of papers is explaining/predicting cognitive load using physiological data. For 

example, Zhang et al. (2015) reported an accuracy of 81.75% for cognitive load (expert label) 

prediction using a fusion of physiological (individual stream accuracy: 79.29%), EEG 

(individual stream accuracy: 80.58%), and gaze (individual stream accuracy: 71.92%) features. 

Similarly, Jeon et al. (2019) predicted children’s cognitive load while reading by using gaze 

features, such as frequency of repeated visits to specific important words and phrases. Lopes 

et al. (2018) used physiological data to detect cognitive load and employed a dialogue-based 

agent to mitigate the adverse effects of high cognitive load. The results show that the entropy 

of system prompts in high-load condition was significantly higher, and that there was also 

significantly higher skewness for intensity in the low cognitive load. 

 

Another key aspect of this category of research outcomes is prediction/analysis of affective 

state. For example, Zhang et al. (2014) used pupil diameter, blink rate, and physiological data 

to predict four affective states (engagement, enjoyment, anxiety, and boredom) using a decision 

tree. The authors reported a very high accuracy of 83.09% (binary classification). Similarly, Jo
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Bekele et al. (2014) used gaze, ECG, PPG, ST, GSR, EMG, and RSP to predict children’s 

affective states. The F1-score for predicting physiological affective states (expert labeling) with 

four classes was reported to be as high as 0.96. 

 

This group of papers shifts away from the traditional multidisciplinary nature of CCI and 

adopts an ML stance, with the main goal of predicting various affective states of the children. 

This stream is closely associated with the affective computing community, and it seems able 

to provide various insights in traditional CCI research. 

4.4.4 Learning performance/experiences  

 

This theme encompasses the contributions that have “explicitly” collected children’s responses 

about their performance either through a pretest and a post-test, or because the experimental 

task had an explicit performance measurement (e.g., shape placement performance: Johnson 

and Picard, 2017; driving task: Wade et al., 2014, 2016). This theme also includes those 

contributions that predict/analyze the game scores in a game-based learning setting (An et al., 

2018; Stone et al., 2014). The final set of contributions explicitly ask children to report their 

experiences, such as excitement (Clegg et al., 2017) and anxiety (Wade et al., 2014), within a 

specific learning setting (e.g., simulations, inquiry-based learning). All the contributions in this 

theme had a specific “learning objective”, as opposed to those discussed in Section 4.4.3. Table 

4 presents the contextual details of these papers (the data collected, the goal of the study, and 

the age group targeted). 

 
Table 4. Details of the studies where explaining/understanding the learning performance and/or learning 

experiences of children was the main theme 

Reference Data Goal Age group 

Johnson and Picard 

(2017) 

EDA Shape placement 

performance 

2–5 

Wade et al. (2016) EEG, eye tracking, 

EMG, ECG, GSR, PPG, 

ST, and respiration 

Performance in driving 

tests 

13–18 

Clegg et al. (2017) Heart rate, breathing 

rate, and movement 

 

STEM learning 

experiences for children in 

inquiry learning scenario 

6–11 

An et al. (2018) Gaze Game score 18–19 

Stone et al. (2014) ECG, EEG Game score Not mentioned 

Wade et al. (2014) ECG, EMG, respiratory 

patterns, SKT, PPG, 

GSR, eye tracking 

Learning experience 

(anxiety) in driving 

simulator 

13–17 

Radeta et al. (2017) Skin conductance Learning gains in a game-

based system 

9–10 

 
These contributions utilized the physiological data not only to differentiate between good and 

poor performers but also to provide feedback. For example, Johnson and Picard (2017) used a 

feedback system to improve shape recognition, with their data showing a clear improvement 

in shape placement over time but only with the motivating sensory feedback. This indicates 

that feedback is a necessary feature. In a live physiological sensing and visualization (LPSV) 

system, Clegg et al. (2017) showed that allowing for incremental integration of new variables 

and life-relevant components in inquiry experiences for young learners helped them focus on 

aspects relevant to the inquiry. The authors also showed that the data from LPSV can help 

educators mitigate the range of sensitive discussions, physical activity, and noise levels. 
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Using gaze to differentiate between good and poor performers in a game-based learning setting, 

An et al. (2018) concluded that participants generally spent more time fixating on selected 

options than on any other option, that the participants spent more time fixating on the correct 

options, and that participants who exhibited higher fixation duration percentages on their 

selected answers scored higher. In another game-based learning environment, Stone et al. 

(2014) showed that tutees had higher HR and higher engagement than tutors. However, tutor–

tutee synchrony was consistently responsible for most of the variance explained in the game 

score. 

 

Physiological data has also been used to explain performance in driving simulators (Wade et 

al., 2015, 2016). In an experiment in which the participants were rated not only on how they 

performed on the driving tasks but also on whether they looked at the salient features of the 

environment, the participants showed improvement in success in both scanning the driving 

environment and in performing the task (Wade et al., 2015). This was not the case in another 

condition where the participants were rated only on their driving performance (Wade et al., 

2016). 

 

This last group of papers focuses on the intended goal (performance). The papers used sensing 

technology to explain performance and differentiate groups with different needs (e.g., low vs. 

high performers), and some went one step further to utilize the information collected via 

sensing to provide feedback. Therefore, this category of papers utilized sensing technology to 

create a complete cycle of interaction with and support for children. 

5. Discussion 
After selecting and coding the 44 contributions in this SLR, we observed certain trends that are 

clear and common among them, based on which technologies were used (Research Question 

1.1), what data was captured (Research Question 1.2), and what insights emerged (Research 

Question 1.3). For example, most of the papers had a small sample size (fewer than 30 children, 

irrespective of the number of conditions); most studies focused on teenagers and 

schoolchildren; and among the papers that included populations with special needs, most of the 

children had ASD. Furthermore, most of these studies were carried out in laboratories or 

schools (33 out of 44), and most were based on games, problem solving, or virtual driving 

simulators (24 out of 44). The most common method to measure performance was task-based 

performance (17 out of 22 that measured performance). Finally, the four major themes for the 

research objectives were: (1) engagement of children; (2) recognition/prediction of special 

needs/behavior; (3) explaining/understanding the behavior/attitude; and (4) learning 

performance/experience. Several implications emerged from this literature review, which we 

discuss next.  

5.1 Implications for Theory and Practice: Challenges and Opportunities  

In this section, we discuss the challenges and opportunities for research that uses physiological 

sensing in the context of CCI (Research Question 2). We divide the challenges and 

opportunities into four groups: (1) populations and data quality; (2) usability and effectiveness; 

(3) new sensors and techniques; and (4) ethical and social concerns. Jo
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5.1.1 Populations and data quality 

In Section 4.1, we showed that most of the studies had a low to moderate effect size, with 28 

out of 44 contributions having fewer than 30 children participating in the study. A majority of 

studies involving children with special needs (e.g., ASD, ADHD) reported that these special 

needs covered a diverse set of requirements for the individual children. Participating children 

lived with a wide range of conditions; therefore, such studies provide insights from a diverse 

set of children (Bian et al., 2019; Sonne and Grønbæk, 2015; Sonne et al., 2017). However, the 

generalizability and the internal validity of these studies are always at risk. Although this is not 

necessarily the goal for many of these papers (e.g., qualitative, exploratory works), it is 

advisable that future studies consider the confounds in their population when analyzing sensor 

data from a low sample size with diverse special needs. This will allow us to achieve some 

level of generalizability and to extract models that can be used in different populations and 

create products that can support end users outside the experimental settings.  

 

Another risk of having a wide population is that their ages, genders, and special needs 

conditions (among other factors) impact the data collection (see Section 4.1). In particular, this 

is the case if the data are collected using physiological sensors such as, EEG, EDA, heart rate, 

pupil dilation, and temperature. Consequently, studies offer only superficial assessments of 

measurements emerging from these data sources and/or they had to discard a high percentage 

of the data. Betancourt et al. (2017) provided a helpful set of guidelines that could improve 

both the support for the claims and the data-processing steps. These guidelines include various 

methods for normalizing, de-noising, and synchronizing the different sensor data.  

 

Another challenge with respect to the participating population emerges when the studies 

include both typically developing children and children with special needs. In our SLR, we 

have found seven such studies (see Section 4.1). Most of these contributions had the research 

objective to recognize the special needs and/or classify the children with special needs (Bekele 

et al., 2013; Goodwin et al., 2016; Jiang et al., 2020). In such cases, the challenge is to keep 

the typically developing children engaged at their own levels and not to have the mirroring 

effect from the children with special needs. For example, if the typically developing children 

stop interacting with the technology, this should not hinder the interaction of the typically 

developing children. For this challenge to be overcome, there is a need for further testing of 

the extracted models and classifiers with increased populations and different settings. The 

sample sizes and data quality needed for this endeavor cannot easily be obtained in typical CCI 

studies, so large research consortia and data-sharing techniques might be needed to overcome 

this challenge.  

5.1.2 Usability and effectiveness 

Involving children as participants (this SLR includes only studies where children are 

participants, and not research partners or in other roles) presents certain technical and practical 

challenges while conducting the studies. A few studies reported certain unexpected behavior 

from children (Javed et al., 2019; Sonne et al., 2017), which could have added a new 

confounding variable to the experiment. Moreover, there can be certain delays and unforeseen 

factors when including children in the studies (Morrison et al., 2010). Such cases can have a 

high impact on the data quality and reproducibility of the results, and they highlight the 

importance and necessity of qualitative studies and the multidisciplinary research community 

that accounts for such high ecology as well as occasionally low data-quality studies. CCI’s 

nature (Giannakos et al., 2020) allows us to bring together various disciplines (e.g., design, 

computer science, learning sciences) and methodological traditions (e.g., from the social Jo
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sciences and engineering) that help develop a clear epistemological position and further our 

knowledge landscape and horizons by embracing the particularities of our discipline.  

 

A common factor in the design of these studies is that most of them had one or two sessions 

per child. This could mean that the experiment remained within the novelty zone of interaction 

and that the engagement was short lived. Although these studies highlight the salient and 

enjoyable aspects of the technology and interaction, it would be more informative for 

longitudinal skills development to conduct studies over a longer period of time. However, 

conducting longitudinal studies that utilize sensing technology is not always feasible. Another 

way to increase the engagement with the short-term studies is to allow participants to control 

their own timing of interaction with the system. In addition, the initial time spent with the 

technology can be increased to reduce the novelty effect. In this way, children can build 

proprietorship from their speculative interaction and experimentation (Morrison et al., 2010). 

This challenge can also be addressed both by engaging with research traditions and methods 

that allow the researcher to employ longitudinal studies and by utilizing sensing technology 

via mobile and ubiquitous devices for in situ self-reports and systematic sensing data collection 

(e.g., the mobile-assisted experience sampling method: Van Berkel et al., 2017). 

 

Another facet of this challenge concerns wearable devices. Most of the off-the-shelf sensing 

equipment are in the form of wearables (EEG caps, eye-tracking glasses, and wristbands to 

capture EDA, HR, BVP, and temperature), as shown in Section 4.3. This adds an extra level of 

complexity, especially when children are involved. The effectiveness of the wearable devices 

is limited by how well the device is attached to the user. Moreover, the convenience of wearing 

the device has a significant impact on the practical usage of the device (Bian et al., 2019; Jiang 

et al., 2020). This convenience needs to be realized by optimizing not only the hardware devices 

but also the number and wearing position of sensing devices, which would achieve non-

intrusive perception (see Section 4.4.2). In addition, the use of wearables might hinder 

children’s participation, since the child or parent might not want to wear something that is not 

socially acceptable. 

 

Furthermore, the choice of the wearable and the data collected should depend on the age group 

of the children included in the experiment (Hedman, 2014). This is further illustrated in Figure 

6, which shows the relation between the age groups and the data collected in the studies 

included in this SLR. For example, when electrodes are placed on fingers, and when an 

individual moves their knuckles, it can produce artifacts. This can also be extended to reflect 

the dependency of the sensing technology used and the other factors defining the context of a 

study, such as the task type and the location of the experiment (e.g., school, museum, or 

laboratory).  
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Figure 6. Mapping between the age groups and the data collected in the contributions 

 

Finally, one of the most important factors in the practical design of the studies is the ecology 

of the study and the potential inherent biases of wearables (e.g., children’s cognitive load might 

increase when wearing equipment) (Almjally et al., 2020; Christensen and Biskjaer, 2018; 

Papavlasopoulou et al., 2019). Experimental activities for children can induce biases such as 

increasing the cognitive load, which might affect the children’s performance and general 

experience with the tasks (see Section 4.4.3). Proper organization and integration of the tasks, 

activities, and experimental materials, with a coherent representation of the related technology 

and instruction in how to use it, are suggested in order to prevent any unnecessary streams of 

information and cognitive overload. 

5.1.3 New sensors and techniques 

The most prominent opportunity in the field of sensing technologies and CCI is the set of new 

sensors and data-processing/analytical techniques. These sensors and technologies are not 

novel per se, but they are seldom used in the context of CCI. Here, we discuss a few 

recommendations emerging from this SLR.  

 

An under-utilized category of sensors in the contributions included in this SLR is that of 

proximity-related sensors. As Section 4.3 makes clear, none of the studies used such sensors. 

Using a close-range (up to a meter) proximity detector can open new avenues of information, 

especially in longitudinal in situ studies that take place in museums, schools, or other open 

environments, rather than in a laboratory. For example, it is possible to record when children 

approach a certain technology or exhibit in a museum and to combine that information with 

the velocity with which they engage. In such cases, if children approach but do not engage, it 

may indicate that the task is too challenging or the feedback is not enticing enough. Such 

insights might help researchers design better methods of communicating and providing 

feedback to the children. In addition, such sensors can allow us to investigate group dynamics 

and children’s behavior in collaborative tasks. Such data are also ecological (children do not 

wear anything) and do not breach children’s privacy (no personal data of the child is captured). 

 

Another important sensor and technology combination is speech recognition. However, despite 

its advantages (Yuan et al., 2019), it is seldom used in the context of CCI studies (only two Jo
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studies used speech, as mentioned in Section 4.3). This technology might be most beneficial 

for helping teenagers engage with the technology. Another advantage of using speech 

recognition is that it can help anticipate the children’s responses or changes in engagement 

levels, enabling the system to be triggered to produce more engaging and enjoyable 

interactions. It might be crucial for the technology to have early indications of whether the user 

is confused, engaged, afraid, or bored. With speech recognition, the system can then decide to 

dynamically alter/modify the communication and information presentation style, while 

simultaneously attempting to fulfill the task goals. However, for this technology to be used, 

several challenges need to be addressed. Proper speech development age (Markopoulos et al., 

2021), effective discourse formulation (Yuan et al., 2019), and the use of different languages 

are some of the most common obstacles. However, it is important to take care of the testing 

granularity of such systems so that these speech-based technologies are as close to human 

parity as possible (Schuller and Schuller, 2020). When using advanced techniques, researchers 

should also take care that these techniques do not become difficult to explain from a human-

centric point of view (Schuller and Schuller, 2020). 

 

Some recommendations can also be made for the sensor data-processing/analyzing techniques 

that are making their way into related fields, such as HCI, affective computing, learning 

analytics, and educational data mining. These techniques are not often used in CCI when 

sensing technologies are involved. The first such technique involves extracting the fine-grained 

features that can better reflect the interactive process. Most of the papers in this SLR used 

aggregated measurements of the sensor data to analyze the interaction between children and 

the task/technology (see Section 4.4). Aggregated data provide the researcher with a certain 

decision-making capability (based on predictions or inference), but such data do not completely 

represent the whole interaction. The temporality of sensor data, such as EDA, heart rate, and 

EEG, provides a larger amount of information about engagement, stress, attention, affect, and 

cognitive processes (Giannakos et al., 2020a, 2020b; Sharma et al., 2019, 2020a) than is 

provided by aggregate measurements. Therefore, it is advisable to use the temporal information 

from the collected sensor data in order to leverage the inherent benefits of sensing technology 

(e.g., temporality, direct access to insights into a child’s cognitive and affective processes).  

 

Furthermore, physiological sensor data provides a unique opportunity for CCI researchers to 

apply state-of-the-art ML techniques, since the data have different granularities and are 

sufficient for properly training the algorithms. This SLR contains some examples of ML being 

used to predict the performance/engagement of children while interacting with the technology. 

However, most of the contributions used basic ML algorithms. For example, Goodwin et al. 

(2016) used a logistic regression classifier to predict the aggressive nature of the children (see 

Section 4.4.2). Wade et al. (2014) used support vector machines to classify children’s 

performance and affective states (see Sections 4.4.3 and 4.4.4). Saadatzi et al. (2013) also used 

support vector machines to classify children’s anxiety levels (see Section 4.4.2). It can be noted 

that the methods used in these papers are classical and provide good prediction quality, but 

they do not exploit the full potential of the data gathered from the physiological sensors.  

 

Moreover, most of the methods used in the studies either used the aggregated version of the 

physiological data across the dependent variable without using time as a factor, or they 

employed discrete classes/clusters of behavior when temporal analysis was conducted. Both 

these methods have their limitations. For example, clearly aggregating the data at the dependent 

variable level does not tell us anything about children’s behavior trajectories. On the other 

hand, using discrete classes/clusters of behavior does not produce a holistic portrayal. In related 

fields such as learning analytics and educational data mining, there are examples of using deep-Jo
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learning methods with temporal data to provide better predictability than is possible with 

clustering or aggregation (Prieto et al., 2018; Olsen et al., 2020; Sharma et al., 2020b). These 

methods could be further exploited to further our understanding of children’s interaction with 

the technologies.  

 

Finally, the last set of recommended techniques involve the adaptation and personalization of 

the interactive experience for the children. By incorporating state-of-the-art adaptation and 

personalization techniques (Korhonen et al., 2020; Oh and Kang, 2020; Sharma et al., 2020c), 

CCI researchers can make the interaction more engaging and effective for the children. Only a 

few papers in this SLR mentioned the need for personalization and adaptation (Dinet and 

Kitajima, 2018; Hauser et al., 2002; Jiang et al., 2020). Higher levels of personalization can be 

achieved through effective feature selection and robust models for recognizing human 

cognitive states (see Section 4.4.3). Currently in CCI, each participant needs to complete the 

predefined set of tasks to make accurate predictions. However, there might be redundancy 

among these experimental tasks. Therefore, the systems should have a dynamic component to 

adjust the task number, task order, and difficulty based on the real-time responses and sensor 

data of the subjects. For example, a heuristic task selection method can be used. This heuristic 

could use the results of each subject under the current task and the current cognitive-affective 

state, in order to recommend the next task until certain diagnosis results are obtained. 

 

Concerning adaptation in CCI, there is an increasing consensus that implementing the tasks in 

an adaptive manner (also known as skill training) might significantly improve long-term 

support for children with special needs (Bradshaw et al., 2019; Pathak et al., 2019). Due to the 

alarmingly increasing prevalence of disorders and the lack of trained therapists, technology-

based assistive ASD intervention has gained momentum in recent years (for a review, see 

Jaliaawala and Khan, 2020). We recommend such protocols be followed in the task selection 

and adaptation for studies both with children with special needs and with typically developing 

children (adaptive systems with typically developing children were also found to be more 

engaging than the non-adaptive systems; Almasri et al., 2019).  

5.1.4 Ethical and social considerations 

Ethical constraints are even more important when children are involved than for any other 

participant population. CCI researchers have always been cautious about privacy and ethical 

concerns (Dowthwaite et al., 2020; Kawas et al., 2020). Van Mechelen et al. (2020) 

systematically presented the ethical constraints in CCI research. In this section, we focus on 

recommendations relating to the sensing technologies and the support sphere of the children 

(parents, caregivers, teachers). 

 

With regard to privacy, data such as camera images and recognized facial 

expressions/emotions, as well as their usage within interactive applications, play an essential 

role. The contextual use of these technologies can provoke disengagement in the children. 

These affective technologies (Bekele et al., 2013; Javed et al., 2019; Okita et al., 2011) utilize 

facial expression and emotions as a key factor in their protocols (see Section 4.4.3). Such 

technology can have different effects on the children’s perception of their privacy if the 

interaction is taking place in different settings, such as in school, outdoors, or at home. We 

recommend that the children are informed about the usage of their data so that such contextual 

biases can be mitigated. In terms of using other sensitive sensor data (e.g., heart rates, GPS 

locations, blood pressure), we propose two different use-cases to handle the data appropriately: 

a short-term use, where the sensitive data is used to drive the momentary adaptation as a part Jo
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of interaction (e.g., task completion, enjoyment); and a long-term use with proper 

anonymization processes to create more long-term effectiveness routines (e.g., skill 

improvement, longitudinal engagement). These long-term routines can be properly vetted by 

the parents and teachers, depending on the context of the study.  

 

Concerning the social aspects of the CCI studies using the sensing technologies, there are 

certain roles that the teachers, parents, or caregivers (in the case of children with special needs) 

can play (see Section 4.4.1). These roles will not only allow the studies to be conducted in a 

smooth fashion but might also increase children’s acceptance of and engagement with the 

sensing technologies. For example, for collaborative or cooperative technologies, the feedback 

can only be triggered by those children who are using the sensors, since it is not necessary for 

all the children in a group to wear a wristband or eye-tracking glasses. In such cases, only the 

player being tracked can trigger the feedback, which might require further cooperation and/or 

social exchanges between children. In a similar manner, a teacher or caregiver could handle 

the prompting (for more cooperation/social exchange), further extending the social dynamic.  

 

Furthermore, for activities where the children are creating artifacts, adults have even broader 

roles than in the previous example. For such scenarios, Papavlasopoulou et al. (2019) proposed 

that teachers and assistants be more involved than just providing instructions and giving 

occasional help. The authors called for more “honest teaching relationships” with the children. 

This might impact the acceptance of the wearable sensors by the children, as they will be more 

engaged in the task (and forget about the sensors) when there is more involvement from the 

“adults in the room”. The teachers and caregivers can also help the children not only to 

understand the requirements of the task but also to make them comfortable with the wearables 

and other sensors present in the experimental setting (e.g., cameras and motion sensors). 

 

Finally, with regard to children with special needs such as ASD and ADHD, an overwhelming 

proportion of such children often fail to achieve conventional independence as adults in terms 

of behavioral markers (Shattuck et al., 2012). Additionally, traditional intervention approaches 

might not be sufficient for creating opportunities for addressing these skills and deficits within 

and across naturalistic settings in appropriately intensive sessions (Goodwin, 2008). Adding 

sensing technology might elevate these impairments (e.g., by participating in new 

environments and processing information about the new wearables, while at the same time 

learning skills related to functional independence). In such cases, the support sphere (parents, 

caregivers, and teachers) can provide much-needed help in conducting the studies in a seamless 

manner. Kuzminykh and Lank (2019) argued that people in the support sphere can act as 

secondary users of the sensor data and help the children understand the novelty in their 

environment in a simplified manner.  

 

It should also be acknowledged that utilizing sensing technology in CCI research and practice 

can lead to significant concerns among stakeholders about the invasion of privacy through 

various modalities of data collected during the interaction between children and computational 

and communication technologies. There might also be concerns about the potential bias built 

into the computational modeling approaches used in the analysis and interpretation of sensor 

data. Another common concern is associated with the potential “surveillance” culture 

encouraged by the use of sensing technologies in CCI. Such concerns are also associated with 

different forms of mainstream data collected in HCI (e.g., clickstreams, keystrokes), and they 

are valid and of particular importance for the vulnerable end-user group of children. As CCI 

researchers, we can neither control nor predict future technological advances, but we 

nevertheless have a moral responsibility to be aware of and reflect on possible implications of Jo
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the research we conduct, the technologies we envision, and the impacts we may facilitate in 

children’s lives (Antle et al., 2021). This is why future research needs to consider the ethical 

and practical issues relating to the use of sensing technology in CCI research and practice 

(Kawas et al., 2020). When making a real-world impact on children’s lives, it is essential to 

respect values and ethics. 

 

5.2 Challenges and Opportunities of Sensing Technologies in CCI 

Research and Practice 

5.2.1 Risks and challenges of using sensing technologies with children 

 

Apart from the aforementioned ethical and social considerations, there are risks and challenges 

of using sensing data with children. First, as Section 4.4 reveals, most studies are quantitative 

in nature, and there was little attempt to include qualitative data from the studies to improve 

the insights by triangulating methods. When qualitative data are lacking or has less impact on 

the final outcomes, certain types of insights (e.g., those that are either non-quantifiable or 

require different data collection technique) might be missed. Therefore, it is important for 

sensing technologies to be employed to serve well-informed purposes within well-justified 

lines of research (e.g., eye tracking to investigate children’s reading behavior), and, if possible, 

for sensor data to be triangulated with additional data collections in order to strengthen its 

richness and interpretation (e.g., think-aloud data or interviews to identify the reasons behind 

certain behaviors). 

 

The second challenge of such methods of investigation is rooted in an over-reliance on the 

“ground truth” labels that act as the training for the predictive/explanatory models. Like the 

first risk, reliance on the ground truth risks a shallow understanding of the theoretical concepts. 

For example, cognitive load has been meticulously defined as having intrinsic, extraneous, and 

germane components (Sweller, 2011), but when it comes to the studies measuring cognitive 

load (e.g., Lopes et al., 2018) the sensor data was used to measure a superficial proxy of 

cognitive load without much information about which actual component of cognitive load was 

the focus of the contribution. Therefore, researchers need to consider the over-simplification 

of complex constructs, imperfect quantitative models, and, occasionally, potential 

prioritization of dimensions that can be quantified using sensor data at the expense of equally 

or more important dimensions (which cannot yet be quantified).  

 

Another major challenge is the lack of contextual information input by the data-processing and 

analysis algorithms. The studies using sensor data inherently employed context-independent 

measurements to understand a construct relating to children’s affective, cognitive, and 

behavioral processes. It is difficult to gain a deeper understanding of children’s interaction with 

technology without some information in the predictive/explanatory models. For example, in a 

context of robot-mediated communications (e.g., Javed et al., 2019; Melo et al., 2019; Okita et 

al., 2011), the constructs, such as engagement with the robot and joint attention with a peer (in 

the case of a collaborative setting), were studied using sensor data without much attention paid 

to the contextual information. However, engagement and joint attention are constructs that can 

vary a great deal depending on the (rich) contextual information from the setting under 

investigation, and this information sometimes seems to be missing from the models used in the 

selected contributions.   Jo
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With real-time low-level data accessibility, there is a high probability of an increase in “micro-

management” in CCI research. For example, EDA and HRV-related measurements of 

engagement used (e.g., Bian et al., 2016; Sonne et al., 2017) in a game/simulation can lead to 

short-term adaptation in the interaction without considering the long-term impact of those 

changes. Such efforts could also result in over-prioritization of dimensions that can be 

quantified using sensor data over other dimensions that cannot be easily quantified. For 

example, learning performance (see Section 4.4.4) has been typically measured with a low-

level post-test, covering mostly procedural and declarative knowledge, whereas higher-level 

learning constructs, such as analysis and synthesis, are generally untouched when sensing 

technologies are used in CCI research. 

 

Based on all the aforementioned potential challenges and risks of using sensor technologies, 

future research in CCI that uses sensing technologies should take a cautious approach to the 

intersecting domain of investigation. On the one hand, sensor data provides researchers with 

an opportunity of real-time, automatic proxies of the affective, cognitive, and behavioral 

dimensions of CCI; however, without both proper theoretical grounding and contextual 

information, it is possible to arrive at faulty conclusions. CCI researchers need to carefully 

consider the strengths and weaknesses of sensing technology and purposefully apply it, whether 

for investigating a construct that would otherwise be non-observable, for supporting children 

with special abilities, or for another well-motivated purpose. In addition, given the paramount 

importance of the contextual information in CCI research, we should leverage inherently 

contextual techniques, such as human-sensors (e.g., via observations, interviews) to 

complement and interpret insights coming from sensor data. 

5.2.2 Opportunities of using sensing technologies with children 

Sensing technology enables CCI researchers to employ passive and continuous captured data 

about children’s behaviors. Such sensor data can be used to enrich CCI research measurements 

(e.g., attention, cognitive load), to support technology’s functionalities (e.g., affective 

systems), and to propel an interaction modality between the system and the child (e.g., gesture, 

motion). Contemporary HCI research (Thieme et al., 2020) recognizes the value of sensing 

data coupled with ML approaches, and it emphasizes the importance of seeing the 

complementarity of these methods, instead of merely seeing them as competitors. Sensor-based 

insights generated during a child’s interaction with the technology have the potential to help us 

to identify children’s real needs (e.g., Castellano et al., 2014) and sometimes even support these 

needs (e.g., Kourakli et al., 2017).  

 

Traditionally, CCI research has employed either qualitative methods or has used mainstream 

data collection (e.g., clickstreams, keystrokes, self-reports) (Markopoulos et al., 2021). 

Mainstream data collection focuses on children’s actions (e.g., pressing a button) and 

consciousness (e.g., their opinion about something) and ignores important processes such as 

information processing while reading a book or arousal levels during gameplay. Sensing 

technology offers the possibility of giving us access to these processes, allowing us to 

complement insights extracted from these otherwise “unseen” processes. Enriching our 

understanding about children’s experience during their interaction with computational and 

communication technologies allows CCI research to consider children’s otherwise unseen 

needs (e.g., moments of disengagement or negative affectivity). Complementing our research 

with sensor data can provide us with a more holistic picture that allows us to support child-Jo
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centeredness (i.e., viewing the child as a protagonist; Iversen et al., 2017), and to design and 

develop technologies that are aware of and account for children’s experience.  

 

To be able to utilize sensing technology in CCI research, and to seize the potential 

opportunities, future work needs to tackle several challenges. The sensor devices, such as 

wearables (e.g., wristbands and glasses), need to embrace children as end users. For example, 

children’s constant movements during their play need to be considered when designing these 

devices, which are mainly made for adults (e.g., in terms of their size, weight, tolerance). 

Moreover, the algorithms need to be considered and sometimes changed to address CCI 

research objectives. Nevertheless, the reviewed studies managed to use various contemporary 

sensing devices (e.g., wristbands and eye trackers) in CCI research. Therefore, despite the 

additional challenges mentioned in Section 5.2.1, future research and practice needs to consider 

the development of sensing technology that accounts for children’s needs (e.g., in relation to 

data privacy, ethics, and size). 

5.3 Limitations and Future Work  

Along with its contributions, this work has some limitations. First, we had to make some 

methodological decisions (e.g., selection of databases, the search query) that might lead to 

certain biases in the results. However, we endeavored to avoid such biases by considering all 

the major databases and following Kitchenham and Charters’s (2007) guiding steps.  

 

Second, the selection of empirical studies and coding of the papers might create another 

possible bias. The focus was clearly on the empirical evidence, and the coding was performed 

by two independent researchers. However, we acknowledge that the authors of the 

contributions could have used completely different terminology in their published works (e.g., 

the name of the individual sensing device, such as eye tracking, EEG) and avoided using the 

term “physiological data”. However, most of the studies used both the name of the particular 

sensing device (e.g., EEG) and the term “physiological data”, so those studies would have been 

captured with our search strategy. In addition, the most relevant venues (e.g., IDC, IJCCI) were 

searched thoroughly.  

 

Third, some elements of the papers were not described accurately, leading to some missing 

information in the coding of the papers. However, the amount of missing information was small 

and could not affect the results significantly.  

 

Sensing technology offers promising functionalities to CCI research, both as an interaction 

modality and as a data collection mechanism. As our literature review has shown, sensing 

technology is becoming increasingly prevalent in CCI research due to its inherent benefits (e.g., 

it is automatic, pervasive, and yields temporal insights), as well as to its ability to be employed 

with and complement more traditional research methods. Despite the growing use of sensing 

technology in CCI and its potential, the CCI literature recognizes that thorough consideration 

of the ethical underpinnings is necessary. From a practical standpoint, future work should 

consider the preparation required for employing sensing technology in CCI studies. In addition, 

future work should consider ethical, social, and privacy concerns, identify how to communicate 

the information provided by this data collection to the children and parents, and allow them to 

provide an informed assent/consent. This is particularly important since most children and 

parents are new to some of the sensing technologies. Therefore, future research needs to 

provide frameworks for CCI researchers that allows them to plan and utilize sensing devices 

in their research, since describing the details in the consent form or running sensing-based Jo
ur

na
l P

re
-p

ro
of



 

Journal Pre-proof
 

studies in the same way that we implement traditional measurements is probably not sufficient. 

Rather, it is extremely important to engage in discussion with the children and parents and to 

explain the rationale and added value of such data collection.  

6. Conclusions 
We have presented an SLR of 44 contributions in the field of CCI and sensing technologies 

from recent years. We analyzed the papers from the perspective of the study design (learning 

context, environment, population, and so on) and the insights the research provides about the 

children’s task-based performance/outcome, engagement, special needs, and behavior. We 

categorized the main findings of the selected papers in four thematic areas and discussed the 

challenges and opportunities emerging from the current review in terms of both the sensing 

technologies used and the impact they could have on our understanding of children’s outcomes 

and behavior. Finally, based on the current state of the field, we have proposed four different 

strands of further possible advances.  

 

In essence, sensing technology approaches can provide explicit and comprehensible ways to 

advance CCI research. Presenting sensor-based information to children, researchers, parents, 

and other stakeholders to make them more informed decision-makers offers great social 

benefits. This can contribute to the vision of Mike Eisenberg by offering a new form of 

“transhumanist technologies” (Eisenberg, 2017) that enable children, teachers, parents, and 

CCI researchers to perceive important insights that augment their capacities. Therefore, sensing 

technologies should be tightly coupled with researchers, respect children’s values, and 

ultimately enhance children’s various capabilities.  
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